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Abstract
Twelve coupled model simulations of two multi-model ensemble (MME) systems for boreal
winters from 1983 to 2005 are used to improve the climate prediction. From grading the
relative capability of each simulation in reproducing the observed link between the tropical
El Niño-Southern Oscillation (ENSO)-related Walker circulation and the Pacific rainfall, we
find an optimal MME suite with improved prediction skills. This study demonstrates that
the climate filter concept, proposed by us in a recent work, is not only useful in improving
the MME prediction skills as compared to a single MME system, but also the skills of
a grand MME that encompasses two well-performing MMEs. Copyright  2013 Royal
Meteorological Society
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1. Introduction

The multi-model ensemble (MME) strategy, known as
the combination of ensembles from different models,
is a useful tool to reduce the uncertainty that arises
from the inherent errors both in the initial conditions
and in the dynamical or physical processes of the
imperfect model formulations (Krishnamurti et al .,
1999; Peng et al ., 2002; Yun et al ., 2005); the method
generally demonstrates more skillful performance than
the individual models (Barnston et al ., 2003; Palmer
et al ., 2004; Hagedorn et al ., 2005). Dynamical MME
seasonal predictions are operationally implemented at
many climate prediction centers (Saha et al ., 2006; Lee
et al ., 2009). However, increased number of multiple
model forecasts does not necessarily translate into
better skills. For example, Weisheimer et al . (2009)
investigated the prediction skill for a grand MME,
which is a combination of DEMETER (Palmer et al .,
2004) and ENSEMBLES (Weisheimer et al ., 2009;
Alessandri et al ., 2011). They show that the prediction
skills for the grand MME are yet relatively limited.
In this context, in a recent paper (Lee et al ., 2011),
we showed that a few models with relatively poor
forecast/hindcast skills can still limit the skills of
the MME. The work also introduces the concept of
using the fidelity of the model skills in reproducing
a relevant climate phenomena and/or relationship to
grade the models. Importantly, the study indicates that
a newer MME with those models that successfully
reproduce the rainfall in the tropical Pacific due to the

El Niño-Southern Oscillation (ENSO)-links Walker
circulations gives significantly better hindcast skills
in prediction of winter climate in East Asia, parts of
Australia, etc.

In this work, we apply the concept of the climate
filter (Lee et al ., 2011) for potential improvement
of a grand MME, derived from a combination of
APEC Climate Center (APCC) MME seasonal pre-
diction system (Lee et al ., 2009) and ENSEMBLES
(Weisheimer et al ., 2009; Alessandri et al ., 2011)
in order to explore whether the methodology can
improve the skills of the grand MME, constituent
MMEs, and individual models.

2. Data and methodology
2.1. Data used

The boreal winter (December through February, DJF)
hindcast outputs for the period of 1983–2005 from
seven coupled models involved in the operational
6-month MME seasonal prediction system of the
APCC, and five coupled models from the European
Commission FP7 project called ENSEMBLES for
seasonal to annual predictions – totaling 12 coupled
model hindcast sets – are used in this study (Table I).
In addition, the atmospheric variables (NCEP-DOE
R2; Kanamitsu et al ., 2002), precipitation (CMAP; Xie
and Arkin, 1997) and sea surface temperature (OISST
V.2; Reynolds et al ., 2002) from 1983 to 2005 are
also used as observations.
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Table I. Description of the coupled atmosphere–ocean general circulation models used.

Institutes Model Name AGCM Resolution OGCM Resolution
Ensemble
member

APCC – global coupled atmosphere-ocean climate models
APCC APCC-CCSM3 CAM3 T85L26 POP 1.3 gxlv3_L40 5
NCEP NCEP_CFS GFS T62L64 MOM3 1/3◦ lat × 1◦ lon L40 15
BOM POAMA BAM v3.0d T47L17 ACOM2 0.5–1.5◦ lat × 2◦ lon

L25
10

FRCGC SINTEX-F ECHAM4 T106L19 OPA8.2 2◦cos(lat) × 2◦ lon
L31

9

Seoul National University SNU SNU T42L21 MOM2.2 1/3◦ lat × 1◦ lon L32 6
University of Hawaii UH ECHAM4 T31L19 UH Ocean 1◦ lat × 2◦ lon L2 10
Pusan National University PNU CCM3 T42L18 MOM3 ∼0.7 (low lat) ∼1.4

(mid lat) and ∼2.8
(high lat) L29

5

ENSEMBLES – global coupled atmosphere–ocean climate models
ECMWF ECMF IFS CY31R1 T159L62 HOPE 0.3◦ ×1.4◦ L29 9
UKMO EGRR HadGEM2-A N96/L38 HadGEM2-O 0.33◦ lat × 1◦ lon L20 9
MF LFPW ARPEGE4.6 T63L31 OPA8.2 2◦ lat × 2◦ lon L31 9
IFM/GEOMAR IFMK ECHAM5 T63L31 MPI-OMI 1.5◦ lat × 1.5◦ lon L40 9
CMCC-INGV INGV ECHAM5 T63L19 OPA8.2 2◦ lat × 2◦ lon L31 9

2.2. Basic concept of the climate filter

The rationale behind the climate filter concept is as
follows. One of the most prominent and important
atmospheric systems is the Walker circulation, and this
zonal circulation, which drives major change in rainfall
variability over the tropical Pacific, is closely linked to
the ENSO (Krishnamurti et al ., 1973; Ropelewski and
Halpert, 1989). The coupled models have significant
lead prediction skills in predicting ENSO indices such
as the Niño3 up to 6 months in advance (Jin et al .,
2008; Jeong et al ., 2012). Therefore, it is expected that
the ENSO-linked Walker circulation and the associated
rainfall changes in the tropical Pacific should at least
be predictable by decent models. This relationship
is the basis of the climate filter concept that Lee
et al . (2011) introduced to select the better performing
models for seasonal prediction.

To compute the Walker circulation, we first use
the seasonal 200 hPa velocity potential anomalies,
obtained by removing the seasonal climatological
mean from the 200 hPa velocity potential. We again
remove the zonal mean field as the signal of the Hadley
circulation from these anomalies, and the residual as
the Walker circulation is taken.

The temporal correlation pattern between the
observed Walker circulation and precipitation in the
tropical region for periods 1983–2005 as a reference
is calculated (figure not shown). High correlations
with magnitudes of more than 0.4, significant at
95% confidence level from a Student’s two-tailed
t-test (henceforth t-test), are generally located along
10◦S–10◦N. Especially, there is a strong association
of the local rainfall in the central and western tropical
Pacific with the zonal circulation.

Further, to examine the relationship of the Walker
circulation with ENSO, we compute the correla-
tions of the Walker circulation index [a Walker
circulation index is calculated as the difference of

area-averaged Walker circulation between the tropical
eastern Pacific (10◦S–0◦, 175◦E–105◦W) and the
tropical western Pacific (10◦S–5◦N, 110–135◦E)]
with the Niño 3.4 index (the Niño 3.4 index is
calculated with SST anomalies averaged in the
box 170–120◦W and 5◦S–5◦N). From this relation-
ship (not shown), it can be discerned that the strong
relationship between the observed Walker circulation
with Niño 3.4 (−0.9, significant at 99% confidence
level from a t-test) is well reproduced by hindcasts of
all model Walker circulations. Also, we can find that
most of model simulations well capture the general
characteristics of the observed Walker circulation.

We utilize the magnitude of the squared correlation
coefficients between the Walker circulation indices
and the Niño 3.4 index as the weights for not
only the observed Walker circulation but also the
hindcast Walker circulation of each model to compute
the observed and predicted ENSO-associated Walker
circulation for all models. The squared correlation
coefficient, known as coefficient of determination, is
one of the best means for evaluating the strength of
the linear association between x and y (Wilks, 1995).

On the basis of these points, we believe that it is
an important measure of model fidelity to predict the
tropical rainfall from model simulations of ENSO-
associated Walker circulation in the tropical Pacific
and also minimum requirement for any model with
necessary fidelity. This concept is used as a climate
filter to classify the individual models.

Specifically, we use two empirical criteria, which
evaluate the strength of hindcast relationship between
ENSO-associated Walker circulation and rainfall over
the tropical Pacific, applied through a scatter diagram
analysis to grade the individual model skills. The
criteria are: (1) the slope of the regression line
fitted between the observed and simulated pattern
correlations of tropical rainfall and ENSO-associated
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Walker circulation should be larger than 0.5 and
less than 1.5 and (2) statistically significant temporal
correlation between these observed and simulated
pattern correlations is more than 0.5 (significant at
∼99% confidence level from a t-test).

2.3. Statistical methods used

For MME prediction, we adopt a simple composite
method (Peng et al ., 2002; Lee et al ., 2009, 2011),
known as simple arithmetic mean of bias corrected
predictions, with equal weights to predictions from
individual models. The bias correction in this method
is performed by subtracting the model’s own clima-
tology from each model forecast as an a posteriori
removal of systematic errors (Peng et al ., 2002; Lee
et al ., 2009, 2011).

The standard t-test (Wilks, 1995) is employed to
compute the statistical significance of the correlations.
The degrees of freedom for the temporal correlation
is estimated as N-2, where N is 23, the number of
winter seasons during the study period. To find the
significance levels for spatial pattern correlations, we
use the effective spatial degree of freedom (ESDOF)
(Wang and Shen, 1999).

Finally, to calculate seasonal anomalies of each
model parameter as well as those from observations for
each year, we follow the standard leave-one-out cross-
validation method (Jolliffe and Stephenson, 2003). We
also use this method in each target year while applying
the climate filter for all hindcast periods.

3. Evaluation of the hindcast relationship
through the climate filter

The scatter plot between the observed and predicted
pattern correlations between tropical Pacific rainfall
and ENSO-associated Walker circulation for all the
12 models is presented in Figure 1. Applying the
two aforementioned empirical conditions to grade the
models (see Section 2.2 for more details), we find
that 4 of 12 models, namely, models 2, 5, 8 and
9 (Figure 1(b), (e),(h) and (i)) successfully represent
the realistic rainfall relationship with the local ENSO-
associated Walker circulation in the tropical Pacific for
the boreal winter season. We further apply aforemen-
tioned cross-validation method and find that the skills
of these four models are robust to the leave-one-out
procedure for the study period (table not shown).

We implement three separate MME hindcast exper-
iments, which are, for convenience, named as the M12
(essentially a grand MME involving hindcasts from all
the 12 models), the A4 (means a filtered grand MME
involving hindcasts from the four performing mod-
els) and the B8 (uses the rest of the model hindcasts).
Figure 2 illustrates the time averages of the spatial
pattern correlations between the observed and the sim-
ulated rainfall and temperature at 850 hPa from all
the three MME experiments for six arbitrary regions,

namely, the Globe (0◦ –360◦E, 90◦S–90◦N), trop-
ics (0◦ –360◦E, 20◦S–20◦N), East Asia (90–150◦E,
20–50◦N), South Asia (60–120◦E, 10–40◦N), western
North Pacific (120–160◦E, 10–40◦N) and Australia
(110–180◦E, 50–10◦S). The other four regions cover
only the subtropical through mid-latitude regions.

We find from Figure 2 that the hindcast skills
of the A4 are in general better than, or similar to,
those for M12 and B8. Even the marginally higher
skills of the M12 grand MMEs for the prediction of
precipitation in the global and tropical regions (0.46
and 0.51, respectively, significant at 91 and 92.6%
confidence level from a t-test; ESDOF = 14.4 and 12.7)
are, however, only an insignificant difference from
the corresponding skills (0.45 and 0.50 significant
at 91.2 and 92.7% confidence level from a t-test;
ESDOF = 15.1 and 13.5, respectively) of the A4. For
these two regions, these slightly better performances
of the M12 are essentially due to the relatively better
performances of the B8 predictions in these regions.

Meanwhile, in the four extratropical regions, it can
be seen that the gap between the MME prediction
skills of the A4 and those of the B8 is significantly
different. Particularly, for the East Asia and South
Asia, the differences of the MME prediction skills
for both variables between the A4 (0.32 and 0.36
for rainfall; 0.29 and 0.21 for temperature) and the
B8 (0.17 and 0.22 for rainfall; 0.14 and 0.04 for
temperature) are distinctly shown as a value of about
0.15. This finding shows that the relatively poor
performance of the M12 prediction is mainly due to
the poor prediction skills of the B8 models.

To further investigate the area average of the
spatial distribution of prediction skills of all the
MME experiments for precipitation and temperature
at 850 hPa, we present spatially averaged values of
the temporal correlation coefficients over the eight
regions for the period of 1983–2005 in Figure 3.
In general, we can easily find that the high MME
prediction skills for both of variables are distributed
intensively throughout the tropical region. It can be
discerned that the MME prediction skills of the A4 for
especially temperature are considerably enhanced over
the extratropical regions including the East Asia, the
South Asia, the Northern Hemisphere and the Southern
Hemisphere as compared with those of B8 and M12
MME. However, for precipitation prediction, it is
shown that the capture of the improved hindcast skills
of the A4 is a little difficult in a few regions such as
the tropics, the East Asia and the Northern Hemisphere
due to the relatively better performance of the B8
MME. We can also find that the MME prediction skills
in the Northern Hemisphere are slightly higher than
those in the Southern Hemisphere.

To further explore a practical use of the cli-
mate filter method for a grand MME prediction of
APCC/ENSEMBLES, we carry out the MME predic-
tions for the seven APCC coupled models (named as
the APCC) and the five ENSEMBLES models (named
as the ENS), respectively. In Figure 4, the four MME
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Figure 1. Scatter diagrams depicting spatial pattern correlation between the ENSO-associated Walker circulation and precipitation
from observation (y axis) over the tropical Pacific region (100◦E–60◦W, 10◦S–10◦N), for 23 boreal winter during the period
of 1983–2005, plotted against those from the individual models (x axis). The solid blue line is the regression line of fit and the
dashed red line is a reference diagonal line. The slope ‘b’ from the fitted regression line is provided in the upper left. The ‘xycorr’
represents the temporal correlations of each model with observation. Figure reproduced from Lee et al. (2011).

Figure 2. Time average of spatial pattern correlations between the observed and simulated precipitations (blue bars) and those
for the temperature at 850 hPa (red bars) from M12, A4 and B8 over the six regions of the Global region (0◦ –360◦E, 90◦S–90◦N),
Tropics (0◦ –360◦E, 20◦S–20◦N), East Asia (90–150◦E, 20–50◦N), South Asia (60–120◦E, 10–40◦N), western North Pacific
(120–160◦E, 10–40◦N) and Australia (110–180◦E, 50–10◦S). M12, A4 and B8 are the multi-model ensemble predictions based
on a simple composite method using the total of 12 models, the four more skillful models and the eight less skillful models,
respectively.
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Figure 3. Area average of the spatial distribution of temporal correlation coefficients for precipitation (blue bars) and temperature
at 850 hPa (red bars) between the observation and hindcasts from M12, A4 and B8 over the eight regions of the (a) Globe,
(b) Tropics, (c) East Asia, (d) South Asia, (e) western North Pacific, (f) Australia, (g) Northern Hemisphere and (h) Southern
Hemisphere during the period of 1983–2005.

prediction skills (APCC, ENS, M12 and A4) are com-
pared to each of the individual model’s skill and to
the averaged skill of all individual models by using
the scatter diagram between the spatial pattern corre-
lations and normalized root mean square error (by the
corresponding observed standard deviation) for pre-
cipitation and temperature at 850 hPa over the four
mid-latitude regions. From these results, it can be seen
that the skills of MME prediction are generally bet-
ter than those of individual models, and it is also
better than the averaged skill of all constituent mod-
els over all regions. The values of pattern correlation
of MME prediction for precipitation are considerably

higher than those for temperature over the same area.
Differences between the normalized errors of MME
predictions are relatively smaller than those between
the spatial correlation skills. We can also find that
the MME prediction skills by ENS are generally bet-
ter than those for APCC MME. However, the APCC
MME exhibits significantly better hindcast skills for
Australia, which experiences its summer monsoon, and
also in predicting precipitation in South Asia. While
the performance of the M12 grand MME prediction is
relatively inconsistent and subject to the location, it is
apparent that the A4 filtered grand MME gives more
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Figure 4. Scatter diagram between the spatial pattern correlation skills and normalized root mean square errors (NRMSEs) for
precipitation (left panels) and temperature at 850 hPa (right panels) over the four regions of the (a, b) East Asia, (c, d) South Asia,
(e, f) western North Pacific and (g, h) Australia derived from the four MMEs (APCC, ENS, M12 and A4) and individual model
predictions.

skillful predictions as compared with other MMEs in
the all four midlatitude regions.

4. Summary and conclusion

We apply a climate filter, proposed by Lee et al .
(2011), to rank the individual model hindcast perfor-
mances of two MME systems through evaluation of
the relative capabilities of each model in reproducing
the observed relationship between the tropical Pacific
rainfall and the local ENSO-associated Walker circula-
tion for boreal winter season (DJF) during the period

1983–2005. Twelve coupled model hindcast simula-
tions of the APCC operational MME prediction system
and ENSEMBLES are used in this study. We explore
the usefulness of this climate filter method to filter
models with better fidelity, and finally introduce an
optimized MME suite with enhanced seasonal predic-
tion skills. In agreement with Lee et al . (2011), we
find that the MME prediction skills from four bet-
ter performing models are indeed significantly higher
as compared with those from the rest of the non-
performing models, and those from the all-inclusive
12 model grand MME. Particularly, it is noteworthy
that the difference of MME prediction skills between
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the performing and nonperforming models consider-
ably widens over the extratropics; most of the models
generally exhibit good skills in predicting the tropi-
cal climate. Incidentally, the performance of the grand
MME including all the available models, on the other
hand, shows the limitations that vary in different local-
ities in the extratropics as compared to MME suites of
the APCC and ENS. Importantly, the revised grand
MME, constituting the four significant skillful models
that are cleared by the climate filter, provides signif-
icantly better performance. The results, built on the
earlier work by Lee et al . (2011), confirm that selec-
tion of models that can reproduce realistic climate
associations provides a better prediction skill. From
a specific and practical point, these also emphasize
the necessity of the climate filter for enhancement of
MME seasonal prediction of the boreal winter climate.
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Déqué M, Keenlyside N, MacVean M, Navarra A, Rogel P. 2009.
ENSEMBLES: a new multi-model ensemble for seasonal-to-annual
predictions-skill and progress beyond DEMETER in forecasting
tropical Pacific SSTs. Geophysical Research Letter 36: L21711,
DOI: 10.1029/2009GL040896.

Wilks DS. 1995. Statistical Methods in the Atmospheric Sciences .
Academic Press: New York, NY.

Xie P, Arkin PA. 1997. Global precipitation: a 17-year monthly anal-
ysis based on gauge observations, satellite estimates, and numerical
model outputs. Bulletin of the American Meteorological Society 78:
2539–2558.

Yun WT, Stefanova L, Mitra AK, VijayaKumar TSV, Dewar W,
Krishnamurti TN. 2005. A multi-model superensemble algorithm
for seasonal climate prediction using DEMETER forecasts. Tellus
A, 57: 280–289.

Copyright  2013 Royal Meteorological Society Atmos. Sci. Let. (2013)


